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Distinct dynamic connectivity profiles
promote enhanced conscious perception
of auditory stimuli
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The neuroscience of consciousness aims to identify neural markers that distinguish brain dynamics in
healthy individuals from those in unconscious conditions. Recent research has revealed that specific
brain connectivity patterns correlate with conscious states and diminish with loss of consciousness.
However, the contribution of these patterns to shaping conscious processing remains unclear. Our
study investigates the functional significance of these neural dynamics by examining their impact on
participants’ ability to process external information duringwakefulness. Using fMRI recordings during
anauditory detection task and rest,we show that ongoingdynamics are underpinnedbybrain patterns
consistent with those identified in previous research. Detection of auditory stimuli at threshold is
specifically improved when the connectivity pattern at stimulus presentation corresponds to patterns
characteristic of conscious states. Conversely, the occurrence of these conscious state-associated
patterns increases after detection, indicating amutual influence between ongoing brain dynamics and
conscious perception. Our findings suggest that certain brain configurations aremore favorable to the
conscious processing of external stimuli. Targeting these favorable patterns in patients with
consciousness disorders may help identify windows of greater receptivity to the external world,
guiding personalized treatments.

Our interactions with the environment are determined by an interplay
between endogenous ongoing neural activity and our neural responses to
external stimuli. Each moment, our brains process and integrate a wide
variety of internal and external stimuli of differentmodalities.While someof
these stimuli are processed consciously and contribute to our subjective
experiences, most remain unconscious1,2. Neural events correlating with
conscious perception are widely investigated in the literature, mainly by
comparing the conscious and unconscious perception of the same stimulus
using various paradigms such as masking3, threshold stimuli presentation4,
and attentional blink5. These studies have shown that the same stimulus
with a fixed intensity can induce different brain responses and subjective
experiences.

One of the prerequisites for conscious perception is to be in a conscious
state, such as wakefulness (high arousal and high awareness), as opposed to
unconscious states, such as under anesthesia or coma (no arousal, no
awareness), or disorders of consciousness (arousal with limited awareness).
Recent studies in anesthetized non-human primates6,7, and conscious and
unconscious humans8 have explored the time-varying dynamics of resting

state functional connectivity. Unlike traditional resting-state connectivity
analyses that utilize the entire scan9–12, these studies have enabled the
identification of recurring brain patterns that vary on a scale of seconds.
They revealed distinctive connectivity patterns associated with different
states of consciousness. Notably, certain brain patterns with long-range
connectivity and negative interactions appear to be characteristic of a
conscious state and diminish with the loss of consciousness. Additionally,
thalamic deep brain stimulation that aimed at restoring consciousness in
anesthetized non-human primates has been found to restore the afore-
mentioned connectivity patterns13. However, the functional role of these
brain patterns in conscious processing and the formation of subjective
experience remains unknown. In this study,we investigatewhetherandhow
ongoing connectivity patterns influence the processing of external infor-
mation, allowing it to become conscious or not.

The effect of spontaneous baseline brain activity fluctuations on per-
ceptual outcome has been previously explored in different domains by
contrasting perceived and unperceived trials. Electrophysiological record-
ings have shown that the pre-stimulus phase14 and power15,16 of alpha
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activity, as well as the phase17 and dynamics18 of (infra-) slow cortical
oscillations in the task specific regions, correlate with the perceptual out-
comeon trial-by-trial basis. Functionalmagnetic resonance imaging (fMRI)
studies have found that cue-induced pre-stimulus activity reflects atten-
tional allocation19 and task preparation20, and predicts task performance.
Moreover, behavioral performance in Stroop21 and motion discrimination
tasks22 as well as the perceptual outcome of ambiguous vase/face stimuli
presentation23 seem to vary depending on prior activity fluctuations in task-
specific regions such as color-sensitive visual areas,motion-sensitivemiddle
temporal region, and fusiform face area, respectively. In the nociception
domain, pre-stimulus brain activity in the default-mode and fronto-parietal
networks24, along with the functional connectivity between brain areas
involved in pain perception25, are correlatedwith the subsequent perception
of pain. And finally, baseline activations in sensory and attentional areas26

and functional connectivity between different brain regions27 have shown to
predict perceptual performance in an auditory threshold stimulus
detection task.

These studies consistently suggest that fluctuations in baseline brain
activity can significantly impact our conscious perception of the external
world. Yet, most research has primarily focused on individual activations
within specific brain regions associated with a particular task. It’s crucial to
recognize that cognitive processes transcend localized regions andmanifest
through the coordination of various brain networks that process and
exchange information.While some studies have explored the impact of pre-
stimulus functional connectivity onperceptual outcome25,27, theyoften focus
on pairs of regions rather than considering the overall functional config-
uration of the brain. Although this approach provides valuable insights into
networks relevant to the ongoing perceptual task, it falls short of offering a
comprehensive description of the overall brain states that underpin con-
scious processing.

The primary objective of the current study is to examine how ongoing
brain connectivity states influence the formation of conscious experience,
specifically by affecting the ability to process external information. Our
study encompasses several goals: (i) describing brain states as global con-
nectivity configuration patterns involving different networks simulta-
neously, (ii) confirming the existence and characteristics of recurrent brain
patterns observed during resting state8, (iii) investigating the dynamics of
brain states in a time-resolved manner, and (iv) exploring how brain

patterns associated with conscious states8 affect the capacity for conscious
perception. Using fMRI acquisitions, we showed that participants were
more likely to detect auditory threshold stimuli when they exhibited con-
nectivity patterns typical of conscious states8. Additionally, we observed a
higher occurrence of these favorable connectivity patterns following sti-
mulus detection, with participants more likely to either maintain or tran-
sition to these patterns after conscious perception.Our findings suggest that
ongoing brain dynamics and conscious perception have a reciprocal influ-
ence on each other and that certain brain configurations provide a window
of higher receptivity to the external world.

Results
We investigated how ongoing brain configurations emerging from the
coordination of different brain regions influenced the perception of external
stimuli. 25 participants underwent fMRI recordings during an auditory
detection task adapted from Sergent et al.28 (Fig. 1). The task involved
listening to the Frenchvowel (/a/) thatwas embedded in continuous noise at
3 different signal-to-noise ratios (SNR -11, SNR -9, and SNR -7) around the
detection threshold. The general sound level was adjusted for each partici-
pant via a staircase procedure prior to the task to ensure that they could
detect a stimulus with an SNR of −9 dB in 50% of the trials. They also
underwent a resting-state scan before the task.

Ongoing brain dynamics are supported by brain patterns con-
sistent with those identified in previous research
Applying the Hilbert transform and k-means clustering, we computed
whole-brain connectivity patterns for each fMRI volume acquired during
the resting-state scan (Fig. 2a). Our clustering procedure resulted in five
distinct connectivity patterns (Fig. 2b). Subsequently, we utilized the cen-
troids of these clusters to label the task data: each task fMRI volume was
assigned to the nearest cluster basedon its proximity to the cluster centroids.
Upon visual inspection, our study’s cluster centroids closely matched those
documented byDemertzi et al.8. Patterns 1, 2, 3, and 5 in our study exhibited
a robust similarity in their coherence profiles to those identified in the earlier
study (Fig. 2c). Importantly, Pattern 1 corresponded to the brain state
associated with conscious states and diminishing with loss of
consciousness8. On the other hand, Pattern 4 was a new cluster, featuring a
unique coherence profile not observed in the previous study. For a more

Fig. 1 | Experimental procedure. The experimental
session began with a one-up-one-down staircase
procedure which allowed participants to become
familiar with the task and to adjust the stimulus
volume such that a stimuluswith an SNRof -9would
be detected in 50% of the trials. Following a
10minute resting state acquisition, participants
completed an auditory detection task, during which
they heard stimuli embedded in a continuous noise
at different SNRs (−7, −9 and −11). They were
instructed to press a button if they detected a sti-
mulus. Stimuli were delivered randomly every 14 s
(+/−1 s). At the end of each experimental block,
participants verbally indicated on a scale of 7: (i)
how tired they felt, (ii) how successful they think
they were during the block, and (iii) their attentional
focus during the block (1 for complete mind-
wandering and 7 for complete focus on the task).
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formal comparison, we calculated Pearson correlation coefficients between
the coherence values of the patterns from the two studies (Fig. 2c). Our
analysis revealed very strong correlations between our patterns and those
from the earlier study, showcasing a one-to-one matching (Pattern 1:
rho = 0.65, p < 0.0001; Pattern 2: rho = 0.81, p < 0.0001; Pattern 3: rho =
0.57, p < 0.0001; Pattern 5: rho = 0.59, p < 0.0001). As visually depicted,
Pattern 4 (the new pattern) demonstrated lower similarity to the patterns
from Demertzi et al., with correlation values ranging from 0.099 to
0.36 (Fig. 2d).

The clustering procedure successfully yielded well-defined cluster
centroids (Patterns), showcasing functional connections that respected
network borders despite the sparse nature of the connectivity configurations
in the input data (Supplementary Fig. 1a). This indicated the capability of
our clustering procedure to identify commonalities among the connectivity
patterns. To ensure that the similarity between our cluster centroids and
those from the prior research was not merely a feature inherent to the
method employed, we conducted a control analysis. We generated a sur-
rogate dataset and repeated the phase-based connectivity analyses along
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Fig. 2 | Clustering procedure and the cluster centroids. a Inter-areal connectivity
matrices are computed for each resting state and task fMRI volume. Resting state
connectivity matrices are divided into five distinct clusters using k-means clustering
(1). The found cluster centroids are then used to classify the task data (2). By
calculating the distance between each connectivity matrix from the task and the
cluster centroids from the resting state data, the connectivity matrices from the

auditory detection task are assigned to the closest of the five clusters. b Cluster
centroids. c Comparison of the matching patterns. Pearson correlation between the
coherence values of the patterns revealed a strong correspondence between the
patterns of the two studies. d Formal comparison of Pattern 4 to the patterns found
in Demertzi et al. This newly discovered pattern displayed a lower degree of simi-
larity to the patterns identified in the earlier study.
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with the clustering procedure. By randomly shifting the time-series from
each ROI and participant, we disrupted the temporal relationship between
differentROIswhilemaintaining the temporal orderwithin each time series.
As anticipated, clustering procedure applied to surrogate data resulted in
indistinguishable centroids lacking inter-areal connectivity (Supplementary
Fig. 1b). The absence of informative clusters in the surrogate analysis
demonstrated that the patterns identified in the experimental data truly
reflected the brain’s connectivity state and were not artifacts of the
methodology.

Certain connectivity profiles are associated with enhanced
conscious perception
We focused on the task data and hypothesized that the detection of the
threshold stimuli would vary depending on the connectivity pattern present
at the time of presentation. More precisely, we predicted that participants

would be more likely to detect the threshold stimuli if they had the con-
nectivity pattern (Pattern 1) which was previously shown to be the most
typical of conscious states8 (Fig. 3a). Additionally, we considered whether
the perception of a previous stimulus could influence the perception of the
current one. To account for this potential effect, we tested both hypotheses
with a linearmixedmodelwith subject IDas a randomeffect andpattern ID,
SNR and previous stimulus detection status (detected vs. undetected) as
fixed effects.

Overall detection rates (all patterns considered) were 0.90 for SNR -7,
0.58 for SNR -9, 0.22 for SNR -11 and 0.002 for catch trials (Fig. 3b). As
hypothesized, we found a significant interaction between the SNR and
Pattern ID (χ²(12) = 22.67, p = 0.031). Detection rates were significantly
higher when participants were presenting Pattern 1 (mean = 0.67; med-
ian = 0.71) compared to Pattern 2 (mean = 0.55; median = 0.50; t = 2.69;
p = 0.019 after FDR correction; Cohen’s d = 0.28), Pattern 3 (mean = 0.57;

Overall detection rates

Experimental results Threshold stimulus detection rates

*
*

**
**

Hypothesis

c d

a b

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Fig. 3 | Detection rates vary with SNRs and pre-stimulus connectivity config-
urations. aHypothesis of the experiment. We predicted increased detection rates of
the threshold stimulus (SNR -9) when the consciousness-related brain pattern
(Pattern 1) was present at the moment of stimulation. b Overall detection rates for
different SNR. c Participant-averaged psychometric curves for each pattern. Error
bars indicate the standard error. Participants weremore likely to detect the threshold

stimuluswhen displaying Pattern 1 compared to the other patterns.dDetection rates
of the threshold stimulus SNR-09 for different patterns. Pattern 1 was associated
with increased detection compared to the other patterns. No difference was found
between Patterns 2–5. Each point represents one participant (n = 25), and the center
lines of the box plots represent medians.
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median = 0.62; t = 2.67; p = 0.019; d = 0.26), Pattern 4 (mean = 0.54; med-
ian = 0.57; t = 3.49; p = 0.0042; d = 0.35) and Pattern 5 (mean = 0.57; med-
ian = 0.60; t = 3.34; p = 0.0042; d = 0.27) only for the threshold SNR -9
(Fig. 3c–d). No significant differences were found in the other SNRs except
between Pattern 2 and Pattern 5 at SNR -11 (mean: 0.16 vs. 0.25; t =−3.29;
p = 0.01; d =−0.29). When comparing the detection rates at SNR-09 for
each pattern to the overall detection rate resulting from the staircase pro-
cedure (0.58), we found that only Pattern 1 had significantly higher detec-
tion rates (one-sided Wilcoxon signed-rank test, V = 231, p = 0.033). The
detection rates for the other patterns didnot differ from theoverall detection
performance (Pattern 2: V = 148, p = 0.66; Pattern 3: V = 174, p = 0.38;
Pattern 4: V = 147, p = 0.66; Pattern 5: V = 170, p = 0.42). Thus, Pattern 1
was uniquely associatedwith higher detection rates, while the other patterns
did not exhibit this effect.

We also observed a main effect of previous detection (χ²(1) = 21.20,
p < 0.0001), indicating an increased likelihood of detection if the previous
stimuluswas also detected. This effectwas observed regardless of the pattern
(χ²(3) = 6.59, p = 0.086, only a tendency was found) and the SNR
(χ²(4) = 7.43, p = 0.11). Importantly, our key findings were not solely
dependent on including this covariate in our model. Even without con-
sidering previous detection status, a significant pattern*SNR interaction
persisted (χ²(12) = 22.27, p = 0.035). Detection rates were significantly
higher when participants were presented with Pattern 1 compared to Pat-
tern 2 (t = 2.66; p = 0.021; d = 0.27), Pattern 3 (t = 2.63; p = 0.021; d = 0.25),
Pattern 4 (t = 3.42; p = 0.0053; d = 0.34) and Pattern 5 (t = 3.28; p = 0.0053;
d = 0.26) only for the threshold SNR -9, confirming our initial results.

Next, we assessed whether the reaction time differed depending on the
ongoing patterns. Although we did not find any significant differences
between patterns, we found a main effect of the SNR (χ²(2) = 276.83,
p < 0.0001). Not surprisingly, the reaction times were faster for SNR -7
(mean = 1.02 s) compared to SNR -9 (mean = 1.10 s; t =−9.43; p < 0.0001;
d =−0.48) and SNR -11 (mean = 1.20 s; t =−13.16; p < 0.0001; d =−1.00).

Stimulus detection increases the occurrence of patterns favor-
able for conscious perception
To further investigate the dynamic interplay between the ongoing brain
patterns and conscious perception, we assessed whether conscious per-
ception, in turn, alters ongoing brain configurations. To do so, we calculated
the occurrence probability of each pattern in a 9 s window following the
threshold (SNR -9) stimulus presentation and compared the subject-
averaged probabilities between detected (D) and not detected (ND) trials
using two-sidedWilcoxon signed-rank test. This time-windowallowedus to
have enough data points to compute post-stimulus pattern probabilities at
the trial level without including patterns from the pre-stimulus period of the
next trial. The occurrence of Pattern 1 increased following detection, with
participants being more likely to transition to highly connected patterns
after a stimulus detection (V = 258, p = 0.0088) (Fig. 4a). Conversely, we
found an increased occurrence of Pattern 4when participants did not detect
the stimuli (V = 69, p = 0.01). The occurrence of the other patterns did not
differ between detected and not detected trials (Pattern 2:V = 147, p = 0.69,
Pattern 3: V = 138, p = 0.52, Pattern 5: V = 204, p = 0.27).

These results indicated an overall fluctuation in the occurrence of
Patterns 1 and 4 depending on whether participants consciously perceived
the stimulus. We performed a time-resolved analysis to further explore the
exact timing of these changes. We extracted pattern information within a
time window spanning from 3 s prior to the presentation of the threshold
stimulus (pre-stimulus period) to 9 s after stimulation (post-stimulus per-
iod) for each trial. Subsequently, we computed, for a given time point, the
probability of pattern occurrence across trials where the stimulus was
detected and those where it went undetected. Subject-wise comparison of
average pattern probabilities between detected and undetected trials
revealed no significant differences in occurrence probabilities across con-
ditions during the pre-stimulus period (Fig. 4b). Conversely, during sti-
mulus presentation (time = 0), the occurrence probability of Pattern 1 was
statistically higher in detected trials compared to undetected trials (V = 353,
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stimulation. Shaded areas represent standard errors. Pattern 1 showed higher
occurrence in detected trials (V = 353, p = 0.042, marked with a red line) at the
moment of stimulus presentation (t = 0). It also exhibited a trend of higher occur-
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stimulus presentation (V = 58, p = 0.067, marked with orange dashed line).
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p = 0.0034; after FDR correction p = 0.042), corroborating our initial find-
ings. In the post-stimulus period, the probability values of Pattern 1
remained consistently higher in the detected trials, reaching statistical sig-
nificance4 s following the stimulation (V = 254, p = 0.013; a trend after FDR
correction p = 0.086). For Pattern 4, a difference between detected and
undetected trials emerged 5 s after the stimulus presentation (V = 58,
p = 0.0051, a trend after FDR correction p = 0.067). A difference was also
noted for Pattern 3 2 s after stimulus presentation, although it did not
withstand multiple comparisons (V = 72, p = 0.015, not significant after
FDR correction p = 0.20).

Finally, we leveraged post-block subjective ratings to delve into the
relationship between the occurrence of the patterns and participants’ sub-
jectivemental stateswithin a given block (SupplementaryText).We found a
significant correlation between feelings of tiredness and the occurrence of
Pattern 4 (rho = 0.3, p = 0.004, after FDR correction), indicating that par-
ticipants more frequently exhibited Pattern 4 in blocks where they reported
feeling tired (Supplementary Fig. 2).

Altogether, our results suggest that ongoing whole-brain functional
connectivity influences our capacity to consciouslyperceive external stimuli.
Certain whole-brain connectivity profiles that were previously associated
with conscious states8 consistently enhanced detection of threshold auditory
stimuli. Moreover, the conscious perception of the stimulus also influenced
the subsequent brain dynamics. Indeed, occurrence probabilities of these
‘favorable’ patterns increased following conscious perception, underscoring
a reciprocal relationship between ongoing brain dynamics and conscious
perception. Our findings demonstrate that processing of external stimuli
may vary depending on the specific brain state we are in and that certain
brain states promote greater susceptibility to the external world.

Discussion
Our study provides compelling evidence that ongoing brain connectivity
profile influences our ability to process external stimuli. Participants were
more successful in detecting auditory stimuli at threshold when they
exhibited brain patterns characteristic of conscious states8 during the sti-
mulation. Previous research has shown that while such patterns frequently
expressed in healthy individuals, they diminish with loss of consciousness8.
Our results suggest that these patterns facilitate external information pro-
cessing, which could explain why they are rarely observed in vegetative state
patients who lack signs of external awareness. Conversely, these patterns
become more frequent in patients transitioning to a minimally conscious
state, where they exhibit transient moments of external awareness.

One could argue that the pattern observed during stimulus presenta-
tionmight be influenced by residual activity from the previous response. To
mitigate this potential influence, we implemented unusually long inter-trial
intervals (14 s+/−1 s) tominimize carryover effects from the previous trial
onto the current one. In our analysis of post-detection occurrence rates, we
restricted our focus to a 9-s time window rather than the full 14 s post-
stimulus period. This ensured we had enough data points to calculate post-
stimulus patternprobabilities at the trial levelwhile avoiding the inclusionof
patterns from the pre-stimulus period of the next trial. This strategy helped
us avoid thepotential introductionof confounding factors fromoverlapping
time points in both analyses.

Given the hemodynamic response latencies, brain pattern observed at
the moment of stimulation (time 0) reflects brain activity from several
seconds earlier.We chose to focus on this time point rather than 4–5 s post-
stimulation (which would capture the peak of hemodynamic activity pre-
sent at the stimulus presentation) because post-stimulus time points would
also include activity induced by the stimulus and its detection. This would
result in amixture of baseline brain activity and stimulus/response-induced
activity, making it difficult to disentangle their contributions. To avoid this,
we focused on the moment of stimulus presentation, reflecting purely
ongoingbaseline brain activity unaffected by the stimulation.Wechose time
0 over earlier time points (e.g., time -1 or -2) to avoid a larger time lag. Our
extended inter-trial intervals allowed hemodynamic responses from the
previous trial to return to baseline, leaving us with spontaneousfluctuations

in ongoing brain activity similar to a resting state. Given the technical
limitations of fMRI (i.e. poor time resolution), this approachwas optimal for
investigating the effect of baselinebrain state onconscious content. Focusing
on later time points would have contaminated our signal with stimulus-
induced activity, thus not purely reflecting baseline brain activity.

It’s worth noting that the increase in performance was only observed
for stimuli at threshold; the detection rates for supra- and sub-threshold
stimuli remained unaffected by the ongoing brain pattern. This may be
because sub-threshold stimuli do not provide enough bottom-up infor-
mation to trigger conscious processing1 and supra-threshold stimuli are
strong enough to provoke conscious processing regardless of the ongoing
brain pattern. Therefore, threshold stimuli provide a sweet spot where
changes in ongoing brain state can impact the processing of stimuli and give
rise to conscious access when the brain state is favorable.

Previous studies using stimuli at threshold to examine the impact of
baseline brain activity on conscious perception have mainly focused on
variations in local activity within task-related regions14,16,22,23,25. While these
localized activities can offer insights into the excitability of the task-related
regions, establishing their connection to consciousness proves challenging.
Some current theories of consciousness propose that perceptual awareness
arises from long-range interactions between different brain regions2,29. To
test the predictions of these prevailing theories, it becomes imperative to
examine how the coordination of diverse brain networks impacts conscious
perception. Our results align with the global theories of consciousness, as
opposed to local theories of consciousness30,31, by demonstrating that spe-
cific configurations of long-range connectivity are more favorable for con-
scious perception.

Recent research has revealed that the processing of high-level stimuli,
such as audio-visual movies, synchronizes ongoing brain connectivity
dynamics32. Our findings contribute to this body of literature by illustrating
how the conscious perception of threshold stimuli influences subsequent
brain patterns. Specifically, connectivity patterns conducive to conscious
perception were more frequently observed following a successful detection.
This suggests that once the brain consciously processes a stimulus, it tends to
remain or transition into states that are favorable for conscious perception.
This stability in the brain’s receptiveness to the external world over a certain
periodof time alignswith the concept of perceptual hysteresis33, which refers
to the influence of an immediately preceding perception on the current one.
Based on our findings, we could speculate that participants likely transi-
tioned into or maintained these favorable states after a detection, thereby
increasing their chances of detecting subsequent stimuli. Indeed, we
observed that prior detections increased the likelihood of current detections,
suggesting a hysteresis effect. Although the interactionwith the pattern type
was only marginally significant, we believe that all these findings reflect a
common hysteresis phenomenon facilitated by the transition to favorable
brain patterns. Further studies are required to explore and validate this
interpretation thoroughly.

Another interesting finding was the higher occurrence of Pattern 4
following stimuli that participants failed to detect. This result aligns with
subjective ratings of tiredness, showing a significant correlation with the
occurrence of Pattern 4 in a given block. If this brain pattern is indeed
associatedwith tiredness, it could elucidate the heightenedoccurrence of the
pattern when participants were unable to detect the threshold stimulus,
possibly due to fatigue. However, we did not observe a predictive effect of
this patternon subsequent detection,meaning that displaying such apattern
did not decrease detection rates. Further research is needed to clarify this
aspect.

In a recent study, Mortaheb and colleagues investigated the relation-
ship between ongoing brain connectivity and participants’ ongoing
mentation34. The authors found that mind blanking—a wake state without
any mental content—was associated with brain patterns exhibiting positive
connectivity among different brain regions, a pattern also observed in our
study (Pattern 3) and in a prior study8. Previous research has linked mind
blanking to sluggish responses in sustained attention tasks35,36. In light of this
literature, we would have expected to observe longer reaction times when
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participants exhibited this positively connected pattern, indicating potential
mind-blanking. However, we did not find such an effect in our study. It is
important to note some important differences between Mortaheb et al.‘s
study and ours. Unlike Mortaheb’s study, our study wasn’t specifically
designed to explore mind blanking. We did not include any direct probes
about mind blanking, but rather inquired about participants’ mind wan-
dering at the end of each block. Moreover, while reaction times can serve as
an indirect measure of mind blanking, subjective reports offer more direct
evidence. In the future, combining both our and Mortaheb’s paradigms
could offer amore comprehensive understanding of howongoing brain and
mental states interact with the ability to perceive the external world.

Our study takes a distinct approach from prior research in this field.
While previous studies typically compared pre-stimulus brain activity in
detected versus undetected trials14–18,22–27,37, we opted for a hypothesis-driven
approach by independently labeling brain patterns, irrespective of the trial
outcome. Rather than looking for differences in brain activity between
detected and undetected trials, we predicted and showed that certain pre-
defined brain activity configurations can enhance conscious perception.
This strategy allowed us to illustrate the relevance of specific brain patterns
for both conscious access and conscious states, thereby bridging these two
areas of research that are often explored in isolation.

Our study also replicated the brain connectivity patterns observed
during rest in a prior publication8. Despite employing different MRI scan-
ners and scanning different populations, our findings were consistent with
the earlier study, suggesting that our method can produce reliable results
despite variations in experimental conditions. Some might argue that the
similarity between the two studies is due to an inherent feature of our
method rather than to the experimental data. To rule out this possibility, we
tested our clusteringmethodon surrogate datawith the same characteristics
as our original dataset. This control analysis produced completely different
connectivity patterns than the original, which lacked all types of con-
nectivity, illustrating the robustness of ourmethod in different experimental
settings. One notable difference between the patterns of the two studies was
that our inter-areal coherence values were lower than those in the prior
study. This discrepancymight be attributed to the fact that we implemented
additional denoising steps, such as regressing out heart and respiratory
activity from the ROI timeseries. This extra step potentially eliminated the
correlation between different regions induced by physiological artifacts,
retaining only the ‘real’ coherence among brain regions and subsequently
reducing the coherence values. However, the denoising procedure did not
impact the coherence profiles.

Our research has opened up possibilities for other exciting studies that
examine how fluctuations in the ability to perceive external information
from different modalities occur. Given the significance of these brain con-
figurations for both conscious access and conscious states, we believe that
the observed results extend beyond the auditory domain alone. We antici-
pate that future studies will reveal that the perception of stimuli from other
modalities, such as visual or somatosensory stimuli, is similarly influenced
by these ongoing patterns.

The findings of our study indicate that ongoing patterns of brain
connectivity, which are associated with conscious states, may actively
contribute to shaping conscious experiences by altering the capacity to
perceive external information. In the future, identification of these favorable
patterns in real-time in individuals with consciousness disorders could
enable us to target periods of increased receptivity to the external world,
paving the way for the development of personalized patient-care protocols.

Methods
Participants
Twenty-six healthy participants were recruited for this study (13 women,
mean age: 24.6 ± 4.2 years, 25 right-handed). All participants were native
French speakers with good hearing and without any neurological or psy-
chiatric disorders. They gave written consent prior to the experiment and
were remunerated €70 for their participation in the study. One male par-
ticipant was excluded from the study due to technical issues during theMRI

acquisition. The protocol had been approved by the local ethics committee
(promoted by the INSERM, CPP Ile-de-France 6, C13-41). All ethical
regulations relevant to human research participants were followed.

Experimental design and procedure
Participants underwent fMRI recordings while performing an auditory
detection task. They were asked to detect a French vowel (/a/) embedded in
continuous noise28, at 3 different signal-to-noise ratios (SNR -11, SNR -9
and SNR -7) around the detection threshold. Stimuli were delivered in a
randomized fashion every 14 s (+/−1 s) using MRI-compatible head-
phones. Participants had their eyes closed in the fMRI scanner andpressed a
buttonwith their right thumbwhendetecteda stimulus.The sound levelwas
adjusted for each participant via a staircase procedure prior to the task to
ensure 50% detection at SNR -9. This resulted in higher detection rates at
SNR -7 and lower detection rates at SNR -11. The task consisted of 6 blocks
of 8min separated by a small rest period. Thirty stimuli were presented in
each block (ten per SNR level) in addition to three catch trials. Thus, the
whole task contained 198 trials (33 per block). After each block participants
were asked to verbally indicate on a scale of 7: (i) how tired they felt, (ii) how
successful they think they were during the block, and (iii) their attentional
focus during the block (1 for complete mind-wandering and 7 for complete
focus on the task). Participants also underwent a 10min resting state with
eyes closed before the task and a 5min anatomical scan after the task. fMRI
was acquired throughout the whole experimental session including the
staircase procedure and the resting state. The total experimental session
took ~2 h.

MRI acquisition parameters
AllMRI datawere acquired on a 3 T Siemens Prisma System. T2*-weighted
whole brain resting state images were acquired with a multi-band gradient-
echo planar imaging (EPI) sequence (600 volumes, 48 slices, slice thickness:
3mm, TR/TE: 1000ms/30ms, voxel size: 3 × 3 × 3mm, multiband accel-
eration factor: 3, flip angle: 60°). Functional MRI images during the detec-
tion task were acquired using the same sequence. The cardiac and
respiratory activities were also recorded during the fMRI acquisitions. An
anatomical volume was acquired using a T1-weighted MPRAGE sequence
in the same acquisition session (192 or 256 slices, slice thickness: 1 mm,
TR/TE: 2.300ms/ 2.76ms, voxel size: 1 × 1 × 1mm, flip angle: 9°).

fMRI preprocessing
The raw MRI data underwent preprocessing and denoising using custom
MATLAB (The MathWorks) scripts. The preprocessing included seg-
mentation using CAT1238, realignment, co-registration, and normalization
into theMNI152(MontrealNeurological Institute) space as implemented in
SPM1239.We did not perform slice-timing correction as our TRwas already
short (1 s). We also avoided spatial smoothing of our data. The
susceptibility-induced off-resonance field distortions were corrected using
the topup procedure40 as implemented in FSL41, providing a more accurate
representation of the brain. Peripheral physiological data recorded during
the scans such as respiration and cardiac pulsation were extracted using
PhysIO Toolbox42. White matter masks, realignment parameters as well as
their first and second order derivatives, cardiac and respiratory signals were
included as nuisance regressors in the generalized linear model (GLM) in
order to denoise the data. Average time-series were extracted from 42
regions of interest (ROIs) defined as 5mm radius spheres centered at spe-
cified MNI coordinates (as listed in Supplementary Table 1).

Time-varying functional connectivity patterns
Resting state. After preprocessing, the extracted ROI time-series were
converted into a complex representation using their original signal and
the Hilbert transform. The instantaneous phase was calculated by taking
the inverse tangent of the ratio of the imaginary and real parts and then by
“wrapping” into the [-π,π] interval. This created a series of instantaneous
phases for each ROI. Next, the phase differences between each ROI pair
were determined at each time point using cosine similarity, allowing the
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brain’s connectivity configuration at each time point to be represented in
an 861-dimensional space (each dimension represented the coherence of
a pair of ROIs). Data from all participants were combined and k-means
clustering (with k values of 3, 4, 5, 6, and 7) was applied with 1000
repetitions using the Manhattan distance to identify recurrent con-
nectivity configurations. The silhouette method determined that five
clusters provided the best classification. The connectivity configuration at
each timepoint (a 42 by 42phase coherencematrix)was then labeledwith
one of the 5 cluster centroids. Finally, the participants’ brain activity
during the scans was represented as a sequence of the five centroids.

Detection task. For each task fMRI volume, inter-areal coherence
matrices were calculated using the Hilbert transform and cosine simi-
larity as described above. Thesematrices were then assigned to the closest
of the five clusters that were computed using the resting state data.

Statistics and reproducibility
Statistical analyseswere conducted inR43 using lme444, emmeans45, and car46

packages. To account for multiple comparisons, all statistics were corrected
using the False Discovery Rate (FDR) Benjamini-Hochberg procedure.
Linear mixed models with subject ID as a random factor were used to
investigate SNR and Pattern ID on detection rates and reaction times. The
statistics for both detection rates and reaction times were calculated at the
individual subject level, and the observations in the model were weighted
basedon thenumberof trials performedby eachparticipant.Only responses
with a latency between 400ms and 2000mswere considered in the analyses.
Importantly, an arcsine transformation was applied to the detection rates
and an inverse transformation was applied to the reaction times (1/RT) to
better meet the model assumptions. The assumptions of the linear models
were assessed visually through residual distributions andQ-Qplots, and the
significance of individual factors was evaluated usingWaldX-tests. Subject-
averaged post-stimulus pattern probabilities were compared between
detected and undetected trials using paired Wilcoxon signed-rank tests.
Finally, the relationship between pattern probabilities and subjective reports
was assessed using Spearman correlations rather than Pearson correlations
since they are more suited for ordinal scales such as subjective ratings.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data that support the findings of the study can be found in OSF.

Code availability
Custom analysis scripts can be found in OSF.
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